求解,高等数学曲线积分问题
展开全部
y^2 = 1+x^2, x = ±√(y^2 -1), dx/dy = ±y/√(y^2 -1),
ds = √{1+[y/√(y^2 -1)]^2} = √(2y^2 -1)dy/√(y^2 -1),
I = ∫<1, 2>√(y^2 -1)y√(2y^2 -1)dy/√(y^2 -1)
= ∫<1, 2>y√(2y^2 -1)dy
= (1/4)∫<1, 2>√(2y^2 -1)d(2y^2-1)
= (1/4)(2/3)[(2y^2-1)^(3/2)]<1, 2>
= (1/6)[7^(3/2) - 1]
ds = √{1+[y/√(y^2 -1)]^2} = √(2y^2 -1)dy/√(y^2 -1),
I = ∫<1, 2>√(y^2 -1)y√(2y^2 -1)dy/√(y^2 -1)
= ∫<1, 2>y√(2y^2 -1)dy
= (1/4)∫<1, 2>√(2y^2 -1)d(2y^2-1)
= (1/4)(2/3)[(2y^2-1)^(3/2)]<1, 2>
= (1/6)[7^(3/2) - 1]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询