
求lim(n趋近无穷)(1+x)(1+x²)(1+x³)…(1+x的2n次方)
1个回答
展开全部
lim(n趋近无穷)(1+x)(1+x²)(1+x^4)…(1+x的2n次方)
=lim(n趋近无穷) (1-x)(1+x)(1+x²)(1+x^4)…(1+x的2n次方)/(1-x)
=lim(n趋近无穷) (1-x^2n)(1+x^2n)/(1-x)
=lim(n趋近无穷) (1-x^4n)/(1-x)
若|x|<1,那么x^4n趋于0,极限值为1/(1-x)
x= -1,极限值=0
而x=1和|x|>1时,极限值趋于无穷大
=lim(n趋近无穷) (1-x)(1+x)(1+x²)(1+x^4)…(1+x的2n次方)/(1-x)
=lim(n趋近无穷) (1-x^2n)(1+x^2n)/(1-x)
=lim(n趋近无穷) (1-x^4n)/(1-x)
若|x|<1,那么x^4n趋于0,极限值为1/(1-x)
x= -1,极限值=0
而x=1和|x|>1时,极限值趋于无穷大
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询