
期权期货BS模型中N(d1)怎么算
展开全部
bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式。
你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式。
扩展资料:
期权与期货合约的区别有以下几方面:
(1)两者的标的物不同:
期权:是以50ETF(代码510050)为标的物的一种买卖权利,期权的买方在买入权利后,便取得了选择权。在约定的期限内既可以行权买入或卖出标的资产,也可以放弃行使权利;当买方选择行权时,卖方必须履约
期货:交易的标的物是标准的期货合约;期货主要不是货,而是以某种大众产品如棉花、大豆、石油等及金融资产如股票、债券等为标的标准化可交易合约。因此,这个标的物可以是某种商品(例如黄金、原油、农产品),也可以是金融工具。
(2)当事人的权利义务不同:
期权:期权是单向合约,期权的买方在支付权利金后即取得履行或不履行买卖期权合约的权利,不必承担义务。
期货:期货合约当事人双方的权利与义务是对等的,也就是说在合约到期时,交易双方都要承担期货合约到期交割的义务。持有人必须按照约定价格买入或卖出标的物(或进行现金结算)。
(3)保证金制度不同:
期权:在期权交易中,买方最大的风险仅限于已经支付的权利金,故不需要支付履约保证金。
而期权卖方面临较大风险,因而必须缴纳保证金作为履约担保。而在我们实际操作中多是做为买方,卖方更多的是在机构。
期货:在期货交易中,无论是多头还是空头,持有人都需要以一定的保证金作为抵押。
(4)盈亏与风险不同:
期权:在期权交易中,投资者的风险和收益是不对称的。具体为,期权买方承担有限风险(即损失权利金的风险)而盈利则有可能是无限的,期权卖方享有有限的收益(以所获得权利金为限)而其潜在风险可能无限;所以对于个人投资者来说就不建议做卖方了。
期货:期货合约当事人双方承担的盈亏风险是对称的。
你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式。
扩展资料:
期权与期货合约的区别有以下几方面:
(1)两者的标的物不同:
期权:是以50ETF(代码510050)为标的物的一种买卖权利,期权的买方在买入权利后,便取得了选择权。在约定的期限内既可以行权买入或卖出标的资产,也可以放弃行使权利;当买方选择行权时,卖方必须履约
期货:交易的标的物是标准的期货合约;期货主要不是货,而是以某种大众产品如棉花、大豆、石油等及金融资产如股票、债券等为标的标准化可交易合约。因此,这个标的物可以是某种商品(例如黄金、原油、农产品),也可以是金融工具。
(2)当事人的权利义务不同:
期权:期权是单向合约,期权的买方在支付权利金后即取得履行或不履行买卖期权合约的权利,不必承担义务。
期货:期货合约当事人双方的权利与义务是对等的,也就是说在合约到期时,交易双方都要承担期货合约到期交割的义务。持有人必须按照约定价格买入或卖出标的物(或进行现金结算)。
(3)保证金制度不同:
期权:在期权交易中,买方最大的风险仅限于已经支付的权利金,故不需要支付履约保证金。
而期权卖方面临较大风险,因而必须缴纳保证金作为履约担保。而在我们实际操作中多是做为买方,卖方更多的是在机构。
期货:在期货交易中,无论是多头还是空头,持有人都需要以一定的保证金作为抵押。
(4)盈亏与风险不同:
期权:在期权交易中,投资者的风险和收益是不对称的。具体为,期权买方承担有限风险(即损失权利金的风险)而盈利则有可能是无限的,期权卖方享有有限的收益(以所获得权利金为限)而其潜在风险可能无限;所以对于个人投资者来说就不建议做卖方了。
期货:期货合约当事人双方承担的盈亏风险是对称的。
展开全部
black-scholes考虑了期权的时间价值。
1.bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式,你要没学过随机和偏微估计只有火星人才能给你讲懂。
2.你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式.
3.你要是真心要理解bs模型公式,我可以推荐一本书,姜礼尚的《期权定价的数学模型和方法》,老老实实从第一章看到第五章,只挑欧式期权看就够了。
~~~突然想当年老娘为了看懂b-s-m模型把图书馆的书都借了一圈~感慨啊,当然HULL的那本option,future,and other derivatives 是经典中的经典,不过太厚了~~
1.bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式,你要没学过随机和偏微估计只有火星人才能给你讲懂。
2.你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式.
3.你要是真心要理解bs模型公式,我可以推荐一本书,姜礼尚的《期权定价的数学模型和方法》,老老实实从第一章看到第五章,只挑欧式期权看就够了。
~~~突然想当年老娘为了看懂b-s-m模型把图书馆的书都借了一圈~感慨啊,当然HULL的那本option,future,and other derivatives 是经典中的经典,不过太厚了~~
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询