洛必达法则的简单运算
2016-12-26
洛必达法则(l'Hôpital's rule)是利用导数来计算具有不定型的极限的方法。这法则是由瑞士数学家约翰·伯努利(Johann Bernoulli)所发现的,因此也被叫作伯努利法则(Bernoulli's rule)。
洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。洛必达法则
洛必达法则(定理)
设函数f(x)和F(x)满足下列条件:
⑴x→a时,lim f(x)=0,lim F(x)=0;
⑵在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;
⑶x→a时,lim(f'(x)/F'(x))存在或为无穷大
则 x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))
主要应用
求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。
求极限的方法有很多,其中之一是用洛必达法则求解未定式“00”型与“∞∞”型,洛必达法则定理如果⑴lim(x→x0)(x→∞)f(x)=0(或∞),lim(x→x0)(x→∞)g(x)=0(或∞);⑵在点x0的某去心邻域内(或|x|>X),f′(x)及g′(x)都存在且g′(x)≠0;⑶lim(x→x0)(x→∞)f′(x)g′(x)存在(或为无穷大),那么有(lxi→mx0)(x→∞)f(x)g(x)=lim(x→x0)(x→∞)f′(x)g′(x)=A(A为有限值或无穷大).
用洛必达法则求极限的常见题型
求limx→0 tan x-xx2sinx.
解limx→0 tan x-xx2sinx=lxi→m0tanxx3-x·s ixnx=lxi→m0tanxx3-x=limx→0sec2x-13x2=lxi→m02sec26x·x tan x=3