初中数学勾股定理的公式有哪些
11个回答
展开全部
直角三角形两直角边a、b的平方和、等于斜边c的平方,即a²+b²=c²。
扩展资料
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
参考资料:
展开全部
直角三角形两直角边a、b的平方和、等于斜边c的平方,即a²+b²=c²
其他初中数学勾股定理的公式可以由a²+b²=c²演化而来。
比如a=√(c²-b²)
其他初中数学勾股定理的公式可以由a²+b²=c²演化而来。
比如a=√(c²-b²)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设△ABC为一直角三角形,其直角为∠CAB。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
其边为BC、AB和CA,依序绘成四方形CBDE、BAGF和ACIH。
画出过点A之BD、CE的平行线,分别垂直BC和DE于K、L。
分别连接CF、AD,形成△BCF、△BDA。
∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。
∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。
因为AB=FB,BD=BC,所以△ABD≌△FBC。
因为A与K和L在同一直线上,所以四边形BDLK=2△ABD。
因为C、A和G在同一直线上,所以正方形BAGF=2△FBC。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
勾股定理魏德武证法到目前为止,可以说他的证法是所有勾股定理证法中最简捷、最实用的首选方法。用四块全等直角三角形边长分别为a、b、c,组成二块长方形面积(ab+ad=2ab),然后再根据前后面积不变的原理,将原四块全等直角三角形面积通过形变,转化成一块正方形面积;这样既不要割补也不需求证,,就可轻而易举地导出直角三角形(2ab=c^2-(b-a)^2,化简后:c^2=a^2+b^2.)三条边的数量关系。古人通常把直角三角形的二条边长分别说成勾和股,所以勾股定理的由来因此而得名。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-02-13 · 知道合伙人教育行家
关注
展开全部
勾股定理的公式只有一个,即 在任意一个直角三角形中,两直角边的平方和是斜边的平方
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询