高等数学,数学分析,求积分,帮帮忙

 我来答
bill8341
高粉答主

2016-12-24 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3708万
展开全部
如果是证明就简单了
求导:ln(x+√(x^2+a^2))
y=ln(x+√(x^2+a^2)),
设u=√(x^2+a^2),则y=ln(x+u),则u'=1/2(x^2+a^2)^(-1/2)*2x=x(x^2+a^2)^(-1/2)
y'=(1+u')/(x+u)=[1+x(x^2+a^2)^(-1/2)]/[x+√(x^2+a^2)] =1/√(x^2+a^2)
追问
求积分呢,不是证明
追答
设x+√(a²+x²) = t
那么(t-x)² = a²+x²
化简得t²-2tx-a²=0
所以2tdt = 2(xdt+tdx)
(t-x)dt = tdx
dx/(t-x) = dt / t
所以
∫(dx/(√(a^2+x^2))
=∫dx/(t-x)
=∫dt/t
=lnt + C
=ln(x+√(a²+x²))+C
zzz680131
高粉答主

2016-12-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.6万
采纳率:78%
帮助的人:7785万
展开全部
见图
追答

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式