2个回答
展开全部
随机变量(X,Y)~N(0,1;0,4;ρ),则DX=1,DY=4,D(2X-Y)=4DX+DY-4ρ√(DX)√(DY)=1,即4+4-8ρ=1,所以ρ=-1/2。
二维随机变量( X,Y)的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系。因此,逐个地来研究X或Y的性质是不够的,还需将(X,Y)作为一个整体来研究。
设E是一个随机试验,它的样本空间是S={e},设X=X(e)和Y=Y(e)S是定义在S上的随机变量,由它们构成的一个向量(X,Y),叫做二维随机变量或二维随机向量。
扩展资料:
现在有一个班(即样本空间)体检,指标是身高和体重,从中任取一人(即样本点),一旦取定,都有唯一的身高和体重(即二维平面上的一个点)与之对应,这就构造了一个二维随机变量。由于抽样是随机的,相应的身高和体重也是随机的,所以要研究其对应的分布。
随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
参考资料来源:百度百科-二维随机变量
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询