当x趋近于0时,xsin1/x的极限是多少哇??x趋近于0的时候sinx~x,那答案

当x趋近于0时,xsin1/x的极限是多少哇??x趋近于0的时候sinx~x,那答案不应该是1嘛!??... 当x趋近于0时,xsin1/x的极限是多少哇??x趋近于0的时候sinx~x,那答案不应该是1嘛!?? 展开
 我来答
热点那些事儿
高粉答主

2021-10-04 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:215万
展开全部

令t=1/x,那么当x→0的时候,t→∞

而xsin(1/x)=sint/t

当t→∞的时候,sint/t的极限当然不可能是1,当x→∞的时候,sint和t都不是无穷小,不存在等价不等价的问题。

当x→0的时候,x是无穷小,sin(1/x)的有界函数

所以xsin(1/x)是无穷小乘有界函数,还是无穷小

所以当x→0的时候,xsin(1/x)的极限是0而不是1

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值

2、利用恒等变形消去零因子(针对于0/0型)

3、利用无穷大与无穷小的关系求极限

4、利用无穷小的性质求极限

5、利用等价无穷小替换求极限,可以将原式化简计算

匿名用户
2017-05-17
展开全部
当x→0的时候,sinx~x
所以当x→0的时候,sinx/x的极限是1,x/sinx的极限也是1,这没问题
但是当x→0的时候,sinx~x和xsin(1/x)的极限有什么关系?
是x→0的时候,sinx等价于x,不是x→0的时候,sin(1/x)等价于1/x
注意,等价无穷小,首先等价的两个都必须是无穷小,如果不是无穷小了,怎么可能等价无穷小呢?
当x→0的时候,x和sinx都是无穷小(极限是0),那么有可能成为等价无穷小,当然这两个也的确是等价无穷小。
但是当x→0的时候,1/x是无穷大,sin(1/x)是无极限,两个都不是无穷小,怎么可能是等价无穷小呢?怎么可能等价呢?
所以当x→0的时候,xsin(1/x)=sin(1/x)÷(1/x)的极限又怎么可能是1呢?
这是不少人学等价无穷小的时候,常犯是错误。
当x→0的时候,sinx~x了,那么在某些人心中,无论x趋近于啥,sinx和x都等价
x→1的时候,他们也认为sinx和x等价
x→∞的时候,他们也认为sinx和x等价
这怎么可能呢?
令t=1/x,那么当x→0的时候,t→∞
而xsin(1/x)=sint/t
当t→∞的时候,sint/t的极限当然不可能是1,当x→∞的时候,sint和t都不是无穷小,不存在等价不等价的问题。
当x→0的时候,x是无穷小,sin(1/x)的有界函数
所以xsin(1/x)是无穷小乘有界函数,还是无穷小
所以当x→0的时候,xsin(1/x)的极限是0而不是1
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式