微积分求步骤
1个回答
展开全部
f(x) = 1/(x+1)
f'(x) =-1/(x+1)^2
f''(x) = 2/(x+1)^3
f^(n)(x) = (-1)^n . n!/(x+1)^(n+1)
f^(n)(x)/n! =(-1)^n /(x+1)^(n+1)
f^(n)(3)/n! =(-1)^n /4^(n+1)
f(x)
= f(3) + [f'(3)/1!](x-3) + [f''(3)/2!](x-3)^2+...+[f^(n)(3)/n!](x-3)^n +...
=1/4 - (1/4^2)(x-3) +...+[(-1)^n/4^n] (x-3)^n +....
f'(x) =-1/(x+1)^2
f''(x) = 2/(x+1)^3
f^(n)(x) = (-1)^n . n!/(x+1)^(n+1)
f^(n)(x)/n! =(-1)^n /(x+1)^(n+1)
f^(n)(3)/n! =(-1)^n /4^(n+1)
f(x)
= f(3) + [f'(3)/1!](x-3) + [f''(3)/2!](x-3)^2+...+[f^(n)(3)/n!](x-3)^n +...
=1/4 - (1/4^2)(x-3) +...+[(-1)^n/4^n] (x-3)^n +....
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询