secX^3的不定积分怎么算啊,速求
∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C
原式=∫secxdtanx
=secx*tanx-∫(tanx)^2secxdx
=secx*tanx-∫[(secx)^2-1]*secxdx
=secx*tanx-∫(secx)^3dx+∫secxdx
2∫(secx)^3=secx*tanx+∫secxdx
∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C
不定积分求法
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。
∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C
原式=∫secxdtanx
=secx*tanx-∫(tanx)^2secxdx
=secx*tanx-∫[(secx)^2-1]*secxdx
=secx*tanx-∫(secx)^3dx+∫secxdx
2∫(secx)^3=secx*tanx+∫secxdx
∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C
不定积分求法
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x).即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。
∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C
原式=∫secxdtanx
=secx*tanx-∫(tanx)^2secxdx
=secx*tanx-∫[(secx)^2-1]*secxdx
=secx*tanx-∫(secx)^3dx+∫secxdx
2∫(secx)^3=secx*tanx+∫secxdx
∫(secx)^3=(1/2)secx*tanx+(1/2)ln|secx+tanx|+C
正割(Secant,sec)是三角函数的一种。它的定义域不是整个实数集,值域是绝对值大于等于一的实数。它是周期函数,其最小正周期为2π
正割是三角函数的正函数(正弦、正切、正割、正矢)之一,所以在2kπ到2kπ+π/2的区间之间,函数是递增的,另外正割函数和余弦函数互为倒数。
在单位圆上,正割函数位于割线上,因此将此函数命名为正割函数。
和其他三角函数一样,正割函数一样可以扩展到复数。