
2个回答
展开全部
x->0
sinx ~ x -(1/6)x^3
sinx/x ~ 1 -(1/6)x^2
sinx/x - 1 ~ -(1/6)x^2
-------------
lim(x->0) ∫(0->x) ( sint/t -1) dt / x^3 (0/0)
=lim(x->0) [ sinx/x -1 ] / (3x^2)
=(1/3)lim(x->0) [ sinx/x -1 ] / x^2
=(1/3)lim(x->0) (-1/6)x^2 / x^2
=-1/18
sinx ~ x -(1/6)x^3
sinx/x ~ 1 -(1/6)x^2
sinx/x - 1 ~ -(1/6)x^2
-------------
lim(x->0) ∫(0->x) ( sint/t -1) dt / x^3 (0/0)
=lim(x->0) [ sinx/x -1 ] / (3x^2)
=(1/3)lim(x->0) [ sinx/x -1 ] / x^2
=(1/3)lim(x->0) (-1/6)x^2 / x^2
=-1/18
更多追问追答
追问
前边3步啥意思啊
追答
等价无穷小 : sinx/x - 1 ~ -(1/6)x^2
x->0
sinx ~ x -(1/6)x^3
sinx/x ~ 1 -(1/6)x^2
sinx/x - 1 ~ -(1/6)x^2
lim(x->0) ∫(0->x) ( sint/t -1) dt / x^3 (0/0)
分子,分母分别取导
=lim(x->0) [ sinx/x -1 ] / (3x^2)
=(1/3)lim(x->0) [ sinx/x -1 ] / x^2
等价无穷小
=(1/3)lim(x->0) (-1/6)x^2 / x^2
=-1/18
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询