所有特征值的乘积等于矩阵的行列式吗

 我来答
教育小百科达人
2020-11-07 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:465万
展开全部

所有特征值的乘积等于矩阵的行列式,这个是正确的。

计算的特征多项式;求出特征方程的全部根,即为的全部特征值;对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量,其中是不全为零的任意实数。

若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值唯一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。



扩展资料:

设A为一n×n三角形矩阵。则A的行列式等于A的对角元素的乘积。根据定理,只需证明结论对下三角形矩阵成立。利用余子式展开和对n的归纳法,容易证明这个结论。

令A为n×n矩阵,若A有一行或一列包含的元素全为零,则det(A)=0;若A有两行或两列相等,则det(A)=0。这些结论容易利用余子式展开加以证明。

热点那些事儿
高粉答主

2021-08-02 · 关注我不会让你失望
知道大有可为答主
回答量:8668
采纳率:100%
帮助的人:201万
展开全部

所有特征值的乘积等于矩阵的行列式,这个是正确的。

计算的特征多项式;求出特征方程的全部根,即为的全部特征值;对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量,其中是不全为零的任意实数。

若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值唯一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。


求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。

[注]:特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zzllrr小乐
高粉答主

2018-06-01 · 小乐图客,小乐数学,小乐阅读等软件作者
zzllrr小乐
采纳数:20147 获赞数:78776

向TA提问 私信TA
展开全部
是的,所有特征值之积,等于矩阵行列式;

而所有特征值之和,等于矩阵的迹
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
心记皆1
高粉答主

2020-11-07 · 关注我不会让你失望
知道答主
回答量:1
采纳率:25%
帮助的人:1.6万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式