1个回答
展开全部
先对分母进行变换:
x²+2xcos(2π/5)+1
=[x+cos(2π/5)]²+1-cos²(2π/5)
=[x+cos(2π/5)]²+sin²(2π/5)
至此,积分转换成∫1/(a²+x²)dx形式,原函数为(1/a)arctan(x/a)+C
原积分式=arctan[(1+cos(2π/5))/sin(2π/5)]-arctan[(-1+cos(2π/5))/sin(2π/5)]
=π/2
x²+2xcos(2π/5)+1
=[x+cos(2π/5)]²+1-cos²(2π/5)
=[x+cos(2π/5)]²+sin²(2π/5)
至此,积分转换成∫1/(a²+x²)dx形式,原函数为(1/a)arctan(x/a)+C
原积分式=arctan[(1+cos(2π/5))/sin(2π/5)]-arctan[(-1+cos(2π/5))/sin(2π/5)]
=π/2
更多追问追答
追问
我等会看看,先谢谢你
我没搞懂是如何变成那一步
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询