
1个回答
展开全部
y=sin(x)/[1+cos(x)]
y'={sin'(x)·[1+cos(x)]-sin(x)·[1+cos(x)]'}/[1+cos(x)]² (u/v)'=(u'v-uv')/v²
={cos(x)·[1+cos(x)]-sin(x)·[-sin(x)]}/[1+cos(x)]²
=[cos(x)+cos²(x)+sin²(x)]/[1+cos(x)]²
=1/[1+cos(x)]
y'={sin'(x)·[1+cos(x)]-sin(x)·[1+cos(x)]'}/[1+cos(x)]² (u/v)'=(u'v-uv')/v²
={cos(x)·[1+cos(x)]-sin(x)·[-sin(x)]}/[1+cos(x)]²
=[cos(x)+cos²(x)+sin²(x)]/[1+cos(x)]²
=1/[1+cos(x)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询