函数的最值问题

 我来答
匿名用户
2018-07-13
展开全部
一个函数y=ax2+bx+c对应一条抛物线,它的最值分为以下几种情况: 第一种,x没有限制,可以取到整个定义域。这时在整个定义域上,抛物线的顶点Y值是这个函数的最值,也就是说,当x取为抛物线的对称轴值时,即x=-b/2a时,所得的y值是这个函数的最值。当a是正数时,抛物线开口向上,所得到的最值是抛物线最低点,也就是最小值,此时此函数无最大值。当a是负数时,抛物线开口向下,所的最值为最大值,此函数无最小值。 第二种,x给定了一个变化范围,它只能取到抛物线的一部分,这时需要判断x能够取到的范围是否包括抛物线的对称轴x=-b/2a。 如果包括,那它的一个最值一定在对称轴处得到(最大值还是最小值要由a的正负判断,a正就是最小值,a负就是最大值)。另外一个最值出现在所给定义域的端点,此时可以把两个端点值都带入函数,分别计算y值,比较一下就可以;如果给的是代数形式,也可以用与对称轴距离的大小来判断,与对称轴距离大的那个端点能够取到最值。 如果x的取值范围不包括对称轴,此时无论定义域分成几段,它的最值一定出现在定义域的端点处,当a〉0时,离对称轴最远的端点取得最大值,最近的端点取得最小值。当a〈0时,最远端取得最小值,最近端取得最大值。 基本上就是这样。
gdzss56
2018-07-13 · 超过26用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:35.8万
展开全部
照的不清楚。最不会的办法就是将选项带入题中
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
善解人意一
高粉答主

2018-07-13 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.6万
采纳率:84%
帮助的人:7403万
展开全部


供参考。

更多追问追答
追答
选择B
追问
不太理解。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式