1个回答
展开全部
x->0 分母 x^3.sinx = x^4 + o(x^4) 分子 cosx = 1- (1/2)x^2 + (1/24)x^4 +o(x^4) e^(-x^2/2) = 1 + [-(1/2)x^2] + (1/2)[-x^2/2]^2 +o(x^4) =1 -(1/2)x^4 + (1/8)x^4 +o(x^4) cosx - e^(-x^2/2) = -(1/12)x^4 +o(x^4) lim(x->0) [cosx - e^(-x^2/2) ]/ (x^3.sinx) =lim(x->0) -(1/12)x^4/ x^4 =-1/12
追问
兄弟你这sinx是啥
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询