展开全部
2、运用积化和差、和差化积以及等价无穷小代换
原式=lim(n->∞) [sin(1/n^2)+sin(2/n^2)+...+sin(n/n^2)]*2sin(1/2n^2)/2sin(1/2n^2)
=lim(n->∞) [2sin(1/2n^2)sin(1/n^2)+2sin(1/2n^2)sin(2/n^2)+...+2sin(1/2n^2)sin(n/n^2)]/(2*1/2n^2)
=lim(n->∞) {cos(1/2n^2)-cos(3/2n^2)+cos(3/2n^2)-cos(5/2n^2)+...+cos[(2n-1)/2n^2]-cos[(2n+1)/2n^2]}*n^2
=lim(n->∞) {cos(1/2n^2)-cos[(2n+1)/2n^2]}*n^2
=lim(n->∞) 2sin[(n+1)/2n^2]sin(n/2n^2)*n^2
=lim(n->∞) 2*[(n+1)/2n^2]*(1/2n)*n^2
=lim(n->∞) (n^2+n)/2n^2
=1/2
原式=lim(n->∞) [sin(1/n^2)+sin(2/n^2)+...+sin(n/n^2)]*2sin(1/2n^2)/2sin(1/2n^2)
=lim(n->∞) [2sin(1/2n^2)sin(1/n^2)+2sin(1/2n^2)sin(2/n^2)+...+2sin(1/2n^2)sin(n/n^2)]/(2*1/2n^2)
=lim(n->∞) {cos(1/2n^2)-cos(3/2n^2)+cos(3/2n^2)-cos(5/2n^2)+...+cos[(2n-1)/2n^2]-cos[(2n+1)/2n^2]}*n^2
=lim(n->∞) {cos(1/2n^2)-cos[(2n+1)/2n^2]}*n^2
=lim(n->∞) 2sin[(n+1)/2n^2]sin(n/2n^2)*n^2
=lim(n->∞) 2*[(n+1)/2n^2]*(1/2n)*n^2
=lim(n->∞) (n^2+n)/2n^2
=1/2
追问
这个方法计算量太大,迫敛性计算量小不少。谢谢你的解答。为了让更多人看到第一题暂时先不给你分数,最后再给,再次感谢
追答
第一题我不会做,我也想看看别人怎么做的
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询