请问sin²x如何展开为幂级数?
2个回答
展开全部
f(x)=(sinx)^2 =>f(0) =0
f'(x)= sin2x =>f'(0)/1! = 0
f''(x)= 2cos2x =>f''(0)/2! = 1
f'''(x)= -4sin2x =>f'''(0)/3! = 0
f''''(x)=-8cos2x =>f''''(0)/4! = -2^3/4!
f^(5)(x)=16sin2x =>f^(5)(0)/5! = 0
f^(6)(x)= 32cos2x =>f^(6)(0)/5! = 2^5/6!
(sinx)^2
=x^2 +(-2^3/4!)x^4 + (2^5/6!)x^6 +.....+(-1)^(n-1) .[2^(2n-1)/(2n)! ]. x^(2n)+...
f'(x)= sin2x =>f'(0)/1! = 0
f''(x)= 2cos2x =>f''(0)/2! = 1
f'''(x)= -4sin2x =>f'''(0)/3! = 0
f''''(x)=-8cos2x =>f''''(0)/4! = -2^3/4!
f^(5)(x)=16sin2x =>f^(5)(0)/5! = 0
f^(6)(x)= 32cos2x =>f^(6)(0)/5! = 2^5/6!
(sinx)^2
=x^2 +(-2^3/4!)x^4 + (2^5/6!)x^6 +.....+(-1)^(n-1) .[2^(2n-1)/(2n)! ]. x^(2n)+...
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询