展开全部
(1)
lim(x->0) tanx/(sin2x)^3
=lim(x->0) x/(2x)^3
=lim(x->0) 1/(8x^2)
不存在
(2)
lim(x->∞) [ x.sin(1/x) - sinx/x]
=lim(x->∞) x.sin(1/x)
y=1/x
=lim(y->0+) siny/y
=1
(4)
lim(x->1) lnx/(x-1)^2
=lim(x->1) ln[1+(x-1) ]/(x-1)^2
=lim(x->1) (x-1)/(x-1)^2
=lim(x->1) 1/(x-1)^2
不存在
(5)
x/(x-1) = 1+ 1/(x-1)
let
1/y = 1/(x-1)
lim(x->∞) [x/(x-1)]^(2x-1)
=lim(x->∞) [1+ 1/(x-1)]^(2x-1)
=lim(y->∞) (1+ 1/y)^(2(y+1)-1)
=lim(y->∞) (1+ 1/y)^(2y+1)
=lim(y->∞) (1+ 1/y)^(2y)
=e^2
lim(x->0) tanx/(sin2x)^3
=lim(x->0) x/(2x)^3
=lim(x->0) 1/(8x^2)
不存在
(2)
lim(x->∞) [ x.sin(1/x) - sinx/x]
=lim(x->∞) x.sin(1/x)
y=1/x
=lim(y->0+) siny/y
=1
(4)
lim(x->1) lnx/(x-1)^2
=lim(x->1) ln[1+(x-1) ]/(x-1)^2
=lim(x->1) (x-1)/(x-1)^2
=lim(x->1) 1/(x-1)^2
不存在
(5)
x/(x-1) = 1+ 1/(x-1)
let
1/y = 1/(x-1)
lim(x->∞) [x/(x-1)]^(2x-1)
=lim(x->∞) [1+ 1/(x-1)]^(2x-1)
=lim(y->∞) (1+ 1/y)^(2(y+1)-1)
=lim(y->∞) (1+ 1/y)^(2y+1)
=lim(y->∞) (1+ 1/y)^(2y)
=e^2
更多追问追答
追问
第二题
使用算的
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询