1个回答
展开全部
∵BQ⊥AE,BQ平分∠ABC(∠ABE)
∴∠ABQ=∠EBQ,∠BGA=∠BGE=90°
∵BQ=BQ
∴△ABG≌△EBQ(ASA)
AB=BE,AQ=EQ
同理:∵CP⊥AD,CP平分∠ACB
∴∠CPA=∠CPD=90°,∠ACP=∠DCP
∵CP=CP
∴△ACP≌△DCP(ASA)
∴AC=CD,AP=DP
∵AB+AC+BC=26,BC=10
∴AB+AC=26-10=16
∴BE+CD=16
∵BE+CD=BD+DE+CD=DE+(BD+CD)=DE+BC=16
∴DE=16-BC=16-10=6
∵AQ=EQ,AP=DP
∴Q、P分别是AE和AD的中点,即PQ是△ADE的中位线
∴PQ=1/2DE=1/2×6=3
∴∠ABQ=∠EBQ,∠BGA=∠BGE=90°
∵BQ=BQ
∴△ABG≌△EBQ(ASA)
AB=BE,AQ=EQ
同理:∵CP⊥AD,CP平分∠ACB
∴∠CPA=∠CPD=90°,∠ACP=∠DCP
∵CP=CP
∴△ACP≌△DCP(ASA)
∴AC=CD,AP=DP
∵AB+AC+BC=26,BC=10
∴AB+AC=26-10=16
∴BE+CD=16
∵BE+CD=BD+DE+CD=DE+(BD+CD)=DE+BC=16
∴DE=16-BC=16-10=6
∵AQ=EQ,AP=DP
∴Q、P分别是AE和AD的中点,即PQ是△ADE的中位线
∴PQ=1/2DE=1/2×6=3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询