不定积分求解谢谢
1个回答
展开全部
主要步骤如下:
∫sinxdx/cosx√1+sin^2x
=-∫dcosx/cosx√2-cos^2x(设√2cosx=cost),则:
=-∫(1/√2)dcost/[(cost/√2)√2-2cos^2t]
=-∫(1/√2)dcost/[(cost/√2)√2sint]
=∫√2dt/(cost)
=∫√2dsint/(cost)^2
=∫√2dsint/[(1-sint)(1+sint)]
=(√2/2)*ln(1+sint)/(1-sint)+c
=(√2/2)*ln(1+√1-2cos^2x)/(1-√1-2cos^2x)+c
∫sinxdx/cosx√1+sin^2x
=-∫dcosx/cosx√2-cos^2x(设√2cosx=cost),则:
=-∫(1/√2)dcost/[(cost/√2)√2-2cos^2t]
=-∫(1/√2)dcost/[(cost/√2)√2sint]
=∫√2dt/(cost)
=∫√2dsint/(cost)^2
=∫√2dsint/[(1-sint)(1+sint)]
=(√2/2)*ln(1+sint)/(1-sint)+c
=(√2/2)*ln(1+√1-2cos^2x)/(1-√1-2cos^2x)+c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询