求助大一高等数学证明题
展开全部
设f(x)=x^(2n+1)+a(2n)x^(2n)+a(2n-1)x^(2n-1)+...+a1x+a0
则f(x)在R上连续
当a0=0时,则f(0)=0,即x=0是方程f(x)=0的实根
当a0>0时,因为f(0)=a0>0,lim(x->-∞)f(x)=-∞
根据连续函数零点定理,存在m∈(-∞,0),使得f(m)=0
即x=m是方程f(x)=0的实根
当a0<0时,因为f(0)=a0<0,lim(x->+∞)f(x)=+∞
根据连续函数零点定理,存在k∈(0,+∞),使得f(k)=0
即x=k是方程f(x)=0的实根
综上所述,方程f(x)=0在R上必有实根
则f(x)在R上连续
当a0=0时,则f(0)=0,即x=0是方程f(x)=0的实根
当a0>0时,因为f(0)=a0>0,lim(x->-∞)f(x)=-∞
根据连续函数零点定理,存在m∈(-∞,0),使得f(m)=0
即x=m是方程f(x)=0的实根
当a0<0时,因为f(0)=a0<0,lim(x->+∞)f(x)=+∞
根据连续函数零点定理,存在k∈(0,+∞),使得f(k)=0
即x=k是方程f(x)=0的实根
综上所述,方程f(x)=0在R上必有实根
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询