展开全部
tan*tan=sin*sin/cos*cos=(1-cos*cos)/cos*cos=1/cos*cos-1
还有以下三角公式
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan©=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan©=ab
1+sin(a)=(sin(a2)+cos(a2))2 1-sin(a)=(sin(a2)-cos(a2))2
还有以下三角公式
1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan©=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan©=ab
1+sin(a)=(sin(a2)+cos(a2))2 1-sin(a)=(sin(a2)-cos(a2))2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解
f(x)=2sinax,a>0
在(-π/6,π/4)上为增函数
则增区间可以表示为
-π/2<ax<π/2
-π/(2a)<x<π/(2a)
那么则要求
-π/6>=-π/(2a)且π/(2a)>=π/4
解得a<=3且a<=2
取交集得到0<a<=2
所以amax=2
f(x)=2sinax,a>0
在(-π/6,π/4)上为增函数
则增区间可以表示为
-π/2<ax<π/2
-π/(2a)<x<π/(2a)
那么则要求
-π/6>=-π/(2a)且π/(2a)>=π/4
解得a<=3且a<=2
取交集得到0<a<=2
所以amax=2
更多追问追答
追问
我知道答案呀,为什么不是(π/4+π6)<π/2这么算呀,不是单调区间小于半个周期吗
追答
谁说它周期是π/2的....
y=Asin(wx+a)+b中
T=2π/w
这个题f(x)=2sinax
T=2π/a
才对呀
你把振幅当成放缩了.......
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询