a.b.c为实数,ac小于0,且根号2a+根号3b+根号5c=0,证明:一元二次方程ax^2+bx

+c有大于4分之3而小于1的根。... +c有大于4分之3而小于1的根。 展开
 我来答
教育行业每日节奏
2013-11-06 · TA获得超过8.1万个赞
知道小有建树答主
回答量:1.5万
采纳率:93%
帮助的人:792万
展开全部
由已知得,√(3/5)*b+c=-√(2/5)*a,则f(√3/5)=a(√3/5)^2+b(√3/5)+c=[3/5-√(2/5)]*a,
又由已知得b=-(√2/3)a-(√5/3)c,则f(1)=a+b+c=[1-(√2/3)]a+[1-(√5/3)]c
所以f(√3/5)*f(1)==[3/5-√(2/5)]*[1-(√2/3)]*a^2+[3/5-√(2/5)][1-(√5/3)]c*a
又[3/5-√(2/5)]<0,[1-(√2/3)]>0,[1-(√5/3)]<0
故f(√3/5)*f(1)的左式中两项均为负。即证f(√3/5)*f(1)<0.
所以一元二次方程ax^2+bx+c=0有大于根号3/5而小于1的根。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式