一道高二解析几何题,求详细解答

已知抛物线y²=2x,圆x²+y²-4x+2=0,斜率存在的直线l与抛物线、圆依次交于点A,B,C,D,且AB=CD,求直线l在x轴上截距的... 已知抛物线y²=2x,圆x²+y²-4x+2=0,斜率存在的直线l与抛物线、圆依次交于点A,B,C,D,且AB=CD,求直线l在x轴上截距的取值范围 展开
义武奋扬x
2014-01-02
知道答主
回答量:21
采纳率:0%
帮助的人:20.7万
展开全部
首先易知圆与抛物线无交点,所以a(x1,y1)d(x2,y2)是与抛物线的交点,b(x3,y3)c(x4,y4)是与圆的焦点,设直线为y=ax+b,代入抛物线,得到一个关于x的方程,由韦达
定理,得x1+x4,然后将直线带入圆,得x2+x3,因为AB=CD,所以x1-x2=x3-x4,所以x1+x4=x2+x3,解出b的取值范围即可
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式