∫arctanx(1+根号x)dx?
展开全部
I = ∫arctanx(1+√x)dx = ∫arctanxdx +∫√xarctanxdx
后者 令 u = √x,
I1 = ∫2u^2arctan(u^2)du = (2/3)∫arctan(u^2)d(u^3)
= (2/3)u^3arctan(u^2) - (2/3)∫2u^4/(1+u^4)du
= (2/3)u^3arctan(u^2) - (4/3)∫[1-1/(1+u^4)]du
= (2/3)u^3arctan(u^2) - 4u/3 +(4/3)∫[1/(1+u^4)]du
= (2/3)u^3arctan(u^2) - 4u/3 +(4/3)∫[1/(1+u^4)]du
∫[1/(1+u^4)]du = [1/(4√2)]ln|(u^2-√2u+1)/(u^2+√2u+1)| 代入得
I1 = (2/3)u^3arctan(u^2) - 4u/3 +[1/(3√2)]ln|(u^2-√2u+1)/(u^2+√2u+1)|
= (2/3)x^(3/2)arctanx - 4√x/3 + [1/(3√2)]ln|[x-√(2x)+1]/[x+√(2x)+1]|
I = xarctanx - ∫xdx/(1+x^2) + I1
= xarctanx - (1/2)∫d(1+x^2)/(1+x^2) + I1
= xarctanx - (1/2)ln(1+x^2) + (2/3)x^(3/2)arctanx - 4√x/3
+ [1/(3√2)]ln|[x-√(2x)+1]/[x+√(2x)+1]| + C
后者 令 u = √x,
I1 = ∫2u^2arctan(u^2)du = (2/3)∫arctan(u^2)d(u^3)
= (2/3)u^3arctan(u^2) - (2/3)∫2u^4/(1+u^4)du
= (2/3)u^3arctan(u^2) - (4/3)∫[1-1/(1+u^4)]du
= (2/3)u^3arctan(u^2) - 4u/3 +(4/3)∫[1/(1+u^4)]du
= (2/3)u^3arctan(u^2) - 4u/3 +(4/3)∫[1/(1+u^4)]du
∫[1/(1+u^4)]du = [1/(4√2)]ln|(u^2-√2u+1)/(u^2+√2u+1)| 代入得
I1 = (2/3)u^3arctan(u^2) - 4u/3 +[1/(3√2)]ln|(u^2-√2u+1)/(u^2+√2u+1)|
= (2/3)x^(3/2)arctanx - 4√x/3 + [1/(3√2)]ln|[x-√(2x)+1]/[x+√(2x)+1]|
I = xarctanx - ∫xdx/(1+x^2) + I1
= xarctanx - (1/2)∫d(1+x^2)/(1+x^2) + I1
= xarctanx - (1/2)ln(1+x^2) + (2/3)x^(3/2)arctanx - 4√x/3
+ [1/(3√2)]ln|[x-√(2x)+1]/[x+√(2x)+1]| + C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询