如图,在△ABC和△ACE中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且DE⊥AC于点E,与CD相交于点F,H是BC边上的中
展开全部
证明:
∵∠ABC=45°,CD⊥AB
∴BD=CD
∵∠ACD+∠A=∠DBF+∠A=90°
∴∠ACD=∠DBF
∵∠BDF=∠ADC=90°
∴△BDF≌△CDA
∴BF=AC
(2)
△BDF≌△CDA
∴AC=BF
∵BD⊥AC,BD平分∠ABC
易得△ABC是等腰三角形
∴CE=1/2AC=1/2BF
(3)
连接CG
∵H是BC中点
∴DH是BC的垂直平分线
∴BG=CG
在△CEG中,CG>CE(斜边大于直角边)
∴BG>CE
∵∠ABC=45°,CD⊥AB
∴BD=CD
∵∠ACD+∠A=∠DBF+∠A=90°
∴∠ACD=∠DBF
∵∠BDF=∠ADC=90°
∴△BDF≌△CDA
∴BF=AC
(2)
△BDF≌△CDA
∴AC=BF
∵BD⊥AC,BD平分∠ABC
易得△ABC是等腰三角形
∴CE=1/2AC=1/2BF
(3)
连接CG
∵H是BC中点
∴DH是BC的垂直平分线
∴BG=CG
在△CEG中,CG>CE(斜边大于直角边)
∴BG>CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询