1个回答
展开全部
设an=a1*q^(n-1),
有a2*a(n-1)=a1*an=128,
又a1+an=66,
知a1和an是方程x^2-66x+128=0的两根,
求得两根为2和64。
1)设a1=2,an=64,
q^(n-1)=32,
Sn=a1*(1-q^n)/(1-q)=a1*[1-q*q^(n-1)]/(1-q)=2*(1-32q)/(1-q)=126
得q=2,
代回q^(n-1)=32 得n=6 ※
2)设设a1=64,an=2,
同1)求法,q=1/2,n=6 ※
有a2*a(n-1)=a1*an=128,
又a1+an=66,
知a1和an是方程x^2-66x+128=0的两根,
求得两根为2和64。
1)设a1=2,an=64,
q^(n-1)=32,
Sn=a1*(1-q^n)/(1-q)=a1*[1-q*q^(n-1)]/(1-q)=2*(1-32q)/(1-q)=126
得q=2,
代回q^(n-1)=32 得n=6 ※
2)设设a1=64,an=2,
同1)求法,q=1/2,n=6 ※
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询