已知函数f(x)满足:对任意x,y属于R 都有f(x+y)=f(x)f(y)-f(x)-f(y)

已知函数f(x)满足:对任意x,y属于R都有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立,且x>0时,f(x)>2(1)求f(0)的值,并证明:当x<0时,... 已知函数f(x)满足:对任意x,y属于R 都有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立,且x>0时,f(x)>2
(1)求f(0)的值,并证明:当x<0时,1<f(x)<2
展开
向往大漠
2014-01-20 · TA获得超过9571个赞
知道大有可为答主
回答量:5557
采纳率:44%
帮助的人:2442万
展开全部
(1)令x=y=0
f(x+y)=f(x)f(y)-f(x)-f(y)+2变为
f(0)=f(0)^2-2f(0)+2
f(0)^2-3f(0)+2=0
(f(0)-1)(f(0)-2)=0
f(0)=1或f(0)=2
因为 x>0时,f(x)>2
令x>0 y=0
f(x+y)=f(x)f(y)-f(x)-f(y)+2变为
f(x)=f(x)f(0)-f(x)-f(0)+2
若f(0)=1,则
f(x)=f(x)-f(x)-1+2 得到f(x)=1不满足条件,
所以f(0)=2

(2) 令y=-x 且x<0,则y>0
所以f(y)=f(-x)>2
f(x+y)=f(x)f(y)-f(x)-f(y)+2 变为
f(0)=f(x)*f(-x)-f(x)-f(-x)+2
f(x)*f(-x)-f(x)-f(-x)=0
f(-x)=f(x)/[f(-x)-1]>2
f(x)/[f(-x)-1]-2>0
[f(x)-2f(x)+2]/[f(x)-1]>0
[f(x)-2]/[f(x)-1]<0
所以 1<f(x)<2
追问
求教的(2) 判断f(x)单调性
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式