如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D

,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个... ,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由. 展开
 我来答
百度网友4552b00
2013-11-27 · TA获得超过8492个赞
知道答主
回答量:1430
采纳率:50%
帮助的人:217万
展开全部
解:∵抛物线y=ax^2+bx+c经过A、B、C三点,
则有:a-b+c=0 ①
9a+3b+c=0 ②
c=3 ③
联立①②③形成方程组并解之得:
a=-1,b=2,c=3
∴抛物线的解析式为:y=-x^2+2x+3
=-(x-1)^2+4
∴直线l为:x=1
设P点纵坐标为n,则P点坐标为(1,n);
又IACI=√[(-1)^2+3^2]
=√10
IAPI=√[(-1-1)^2+n^2]
=√(n^2+4)
ICPI=√[1^2+(n-3)^2]
=√[(n-3)^2+1]
∴△PAC的周长L=IAPI+ICPI+IACI
=√(n^2+4)+√[(n-3)^2+1]+√10
当△PAC的周长最小时,n=1
∴P点坐标为(1,1)
设直线l上存在一点M,使△MAC为等腰三角形的M点的纵坐标m;
则M点的坐标为(1,m);
∴IACI=√10
IAMI=√(m^2+4)
ICMI=√[(m-3)^2+1]
∴①当IACI=IAMI时,△MAC是等腰三角形,即:√10=√(m^2+4)
解之得:m=±√6
∴M点坐标为(1,-√6),(1,√6)
②同理,当IACI=ICPI时,△MAC也是等腰三角形,即:
√10=√[(m-3)^2+1]

解之得:m=0,m=6
∴M点的坐标为(1,0),(1,6)
③同理,当IMAI=IMCI时,△MAC也是等腰三角形,即:
√(n^2+4)=√[(m-3)^2+1]

解之得:m=1
∴M点的坐标为(1,1)
综上所述,在直线l上存在点M,使△MAC为等腰三角形的M点坐标有:
(1,-√6),(1,,6),(1,0),(1,6),(1,1)
追答
祝你学习进步,考试得满分!!给好评哟亲
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式