
(2013•潍坊)如图,抛物线y=ax2+bx+c关于直线x=1对称,与坐标轴交与A,B,C三点,
且AB=4,点D(2,32)在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.(1)求抛物线的解析式;(2)若直线l平分四边形OBDC的面积,求k...
且AB=4,点D(2,3
2
)在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.
(1)求抛物线的解析式;
(2)若直线l平分四边形OBDC的面积,求k的值;
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.
第三问解答:假设存在符合题意的点P,其坐标为(0,t).
•抛物线解析式为:y=−1/2x2+x+3/2=−1/2/(x-1)2+2,
把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线解析式为:y=−1/2/x2.
依题意画出图形,如答图2所示,过点M作MD⊥y轴于点D,NE⊥y轴于点E,
设M(xm,ym),N(xn,yn),则MD=-xm,PD=t-ym;NE=xn,PE=t-yn.
∵直线PM与PN关于y轴对称,∴∠MPD=∠NPE,
又∠MDP=∠NEP=90°,
∴Rt△PMD∽Rt△PNE,
∴MD/NE/=PD/PE/,即−xm/xn/=t−ym/t−yn/
•①,∵点M、N在直线y=kx-2上,∴ym=kxm-2,yn=kxn-2,
代入①式化简得:(t+2)(xm+xn)=2kxmxn ②
把y=kx-2代入y=−1/2/x2.,整理得:x2+2kx-4=0,
∴xm+xn=-2k,xmxn=-4,代入②式解得:t=2,符合条件.
★所以★在y轴正半轴上存在一个定点P(0,2),使得不论k取何值,直线PM与PN总是关于y轴对称
请问最后一步中那个★所以★是怎么得出来的?能详细介绍这一步吗? 展开
2
)在抛物线上,直线l是一次函数y=kx-2(k≠0)的图象,点O是坐标原点.
(1)求抛物线的解析式;
(2)若直线l平分四边形OBDC的面积,求k的值;
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线l交于M,N两点,问在y轴正半轴上是否存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称?若存在,求出P点坐标;若不存在,请说明理由.
第三问解答:假设存在符合题意的点P,其坐标为(0,t).
•抛物线解析式为:y=−1/2x2+x+3/2=−1/2/(x-1)2+2,
把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线解析式为:y=−1/2/x2.
依题意画出图形,如答图2所示,过点M作MD⊥y轴于点D,NE⊥y轴于点E,
设M(xm,ym),N(xn,yn),则MD=-xm,PD=t-ym;NE=xn,PE=t-yn.
∵直线PM与PN关于y轴对称,∴∠MPD=∠NPE,
又∠MDP=∠NEP=90°,
∴Rt△PMD∽Rt△PNE,
∴MD/NE/=PD/PE/,即−xm/xn/=t−ym/t−yn/
•①,∵点M、N在直线y=kx-2上,∴ym=kxm-2,yn=kxn-2,
代入①式化简得:(t+2)(xm+xn)=2kxmxn ②
把y=kx-2代入y=−1/2/x2.,整理得:x2+2kx-4=0,
∴xm+xn=-2k,xmxn=-4,代入②式解得:t=2,符合条件.
★所以★在y轴正半轴上存在一个定点P(0,2),使得不论k取何值,直线PM与PN总是关于y轴对称
请问最后一步中那个★所以★是怎么得出来的?能详细介绍这一步吗? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询