“设a,b,c∈R,若ac2>bc2,则a>b”的逆命题、否命题、逆否命题中真命题共有______ 个
2个回答
展开全部
逆命题:设a,b,c∈r,若ac2>bc2,则a>b;∵由ac2>bc2可得c2>0,∴能得到a>b,所以该命题为真命题;
否命题:设a,b,c∈r,若a≤b,则ac2≤bc2;∵c2≥0,∴由a≤b可以得到ac2≤bc2,所以该命题为真命题;
因为原命题和它的逆否命题具有相同的真假性,所以只需判断原命题的真假即可;
∵c2=0时,ac2=bc2,所以由a>b得到ac2≥bc2,所以原命题为假命题,即它的逆否命题为假命题;
∴为真命题的有2个.
故选c.
否命题:设a,b,c∈r,若a≤b,则ac2≤bc2;∵c2≥0,∴由a≤b可以得到ac2≤bc2,所以该命题为真命题;
因为原命题和它的逆否命题具有相同的真假性,所以只需判断原命题的真假即可;
∵c2=0时,ac2=bc2,所以由a>b得到ac2≥bc2,所以原命题为假命题,即它的逆否命题为假命题;
∴为真命题的有2个.
故选c.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询