高等数学求微分方程的通解
3个回答
展开全部
微分方程首先要分清类型,一把钥匙开一把锁。这是常系数非齐次线性方程,解法是
先求常系数齐次线性方程y"+3y'+2y=0的解,这只要解代数方程x^2+3x+2=0,x=-1,-2
齐次线性方程y"+3y'+2y=0的通解为y=c1e^(-x)+c2e^(-2x),
再求微分方程y"+3y'+2y=6(e的x次方)的一个特解,因为e^(-x),e^(-2x)与e的x次方不同,
可设微分方程y"+3y'+2y=6(e的x次方)的一个特解就是y=Ae的x次方,代入y"+3y'+2y=6(e的x次方)得
A+3A+2A=6,A=1,微分方程y"+3y'+2y=6(e的x次方)的一个特解就是y=e的x次方,
所以所求通解为y=c1e^(-x)+c2e^(-2x)+e的x次方.
这题是最简单的常系数非齐次线性方程。
先求常系数齐次线性方程y"+3y'+2y=0的解,这只要解代数方程x^2+3x+2=0,x=-1,-2
齐次线性方程y"+3y'+2y=0的通解为y=c1e^(-x)+c2e^(-2x),
再求微分方程y"+3y'+2y=6(e的x次方)的一个特解,因为e^(-x),e^(-2x)与e的x次方不同,
可设微分方程y"+3y'+2y=6(e的x次方)的一个特解就是y=Ae的x次方,代入y"+3y'+2y=6(e的x次方)得
A+3A+2A=6,A=1,微分方程y"+3y'+2y=6(e的x次方)的一个特解就是y=e的x次方,
所以所求通解为y=c1e^(-x)+c2e^(-2x)+e的x次方.
这题是最简单的常系数非齐次线性方程。
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
首先求y"+3y'+2y=0的通解
解特征方程x^2+3x+2=0的两根为-1和-2
所以y"+3y'+2y=0的通解为y=C1*e^(-x)+C2*e^(-2x),其中C1,C2为任意常数
然后求y"+3y'+2y=6e^x的特解
应该说,虽然求微分方程的特解本身是相当困难的事,但一般高等数学的题目都不算很难,一般可以用观察法得到
注意到1+2+3=6,而对于y=e^x的各阶导数y',y‘’都是e^x。可以想到特解就是y=e^x(代进去可以证实)
于是y"+3y'+2y=6e^x的通解为y=e^x+C1*e^(-x)+C2*e^(-2x),其中C1,C2为任意常数
解特征方程x^2+3x+2=0的两根为-1和-2
所以y"+3y'+2y=0的通解为y=C1*e^(-x)+C2*e^(-2x),其中C1,C2为任意常数
然后求y"+3y'+2y=6e^x的特解
应该说,虽然求微分方程的特解本身是相当困难的事,但一般高等数学的题目都不算很难,一般可以用观察法得到
注意到1+2+3=6,而对于y=e^x的各阶导数y',y‘’都是e^x。可以想到特解就是y=e^x(代进去可以证实)
于是y"+3y'+2y=6e^x的通解为y=e^x+C1*e^(-x)+C2*e^(-2x),其中C1,C2为任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y”+3y’+2y=6e^{x}
不妨令y=P(x)*e^{x}
代入化简可得:
P''+5P'+6P-6=0
引入变换:Q(x)=P(x)-1,得Q''+5Q'+6Q=0
解得:Q(x)=Ae^{-2x}+Be^{-3x}
从而y=P(x)*e^{x}=(Q(x)+1)*e^{x}=Ae^{-x}+Be^{-2x}+e^{x}
不妨令y=P(x)*e^{x}
代入化简可得:
P''+5P'+6P-6=0
引入变换:Q(x)=P(x)-1,得Q''+5Q'+6Q=0
解得:Q(x)=Ae^{-2x}+Be^{-3x}
从而y=P(x)*e^{x}=(Q(x)+1)*e^{x}=Ae^{-x}+Be^{-2x}+e^{x}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询