计算机为什么采用补码计算
正负数,在计算机中存放的格式,就是补码。
计算机中,并没有原码和反码,也就不必关心它们了。
下面,针对补码,给出解释。
比如,有一个小孩,很小的。
他只认识 100 个数(0~99),也不会做减法。
那么,就可以告诉他:“减一”,就用“加 99”算吧。
36 - 1 = 35
36 + 99 = (1) 35
忽略进位的 100,结果不是一样的吗?
那么,就是说:
99,就是-1 的补数。
98,就是-2 的补数。
。。。
利用“补数”,就可把“减法”转为“加法”。
利用这个特点,计算机中,仅需一个“加法器”,就够用了。
------------
在计算机中,是以二进制存放各种信息的,统称为:代码。
八位,作为一个计算单位。
范围是:0000 0000 ~ 1111 1111。
写成十进制,就是:0~255。
共有 256 个代码。--这个数字,称为:模。
那么:
1111 1111(255),就是-1 的补码。
1111 1110(254),就是-2 的补码。
。。。
1000 0000(128),就是-128 的补码。
求负数的补码,就是这么简单。
而零和正数,直接参加运算即可,用不着求补码。
因此,下面就是补码的定义式。
零和正数的补码: 就是该数字本身。
负数的补码: 就用“模”,加上该负数。
模,就是代码的总个数。
---------
原码和反码,则毫无意义。
所以,在计算机中,并没有它们的存在。
2024-11-19 广告
在计算机中,负数,以其正值的补码形式表示。
就是说,负数,是用一个正数(即补码)来表示的。
使用了补码,计算机中,就没有负数了。并且,也就消除了减法运算。
那么,计算机,只需配置一个加法器,便可横行天下。
1.
可加法代替减法运算,[a-b]补
=
[a]补+[-b]补
简体了计算机运算硬件电路,提高运算效率:
2.
统一了正0和负0
原码及反码的正0、负0有不同的表示,补码的0是唯一的,
例如字长8位,补码的0表示为唯一的00000000
14%12=2
如果此时的正确时间为6点,而你的手表指向的是8点,如何把表调准呢?有两种方法:一把表逆时针拨两个小时;二是把表顺时针拨10个小时,即
8-2=6
(8+10)%12=6
也就是说在此模数系统里面有
8-2=8+10
这是因为2跟10对模数12互为补数。因此有一下结论:在模数系统中,A-B或A+(-B)等价于A+[B补],即
8-2/8+(-2)=8+10
我们把10叫做-2在模12下的补码。这样用补码来表示负数就可以将加减法统一成加法来运算,简化了运算的复杂程度。
采用补码进行运算有两个好处,一个就是刚才所说的统一加减法;二就是可以让符号位作为数值直接参加运算,而最后仍然可以得到正确的结果符号,符号位无需再单独处理。
补码的特性:
1、一个负整数(或原码)与其补数(或补码)相加,和为模。
2、对一个整数的补码再求补码,等于该整数自身。
3、补码的正零与负零表示方法相同。