什么是均值不等式?
1个回答
展开全部
概念:
1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)
2、几何平均数:Gn=(a1a2...an)^(1/n)=n次√(a1*a2*a3*...*an)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√
[(a1^2+a2^2+...+an^2)/n]
这四种平均数满足Hn≤Gn≤An≤Qn
a1、a2、…
、an∈R
+,当且仅当a1=a2=
…
=an时取“=”号
均值不等式的一般形式:设函数D(r)=[(a1^r+a2^r+...an^r)/n]^(1/r)(当r不等于0时);
(a1a2...an)^(1/n)(当r=0时)(即D(0)=(a1a2...an)^(1/n))
则有:当r<s时,D(r)≤D(s)
注意到Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)
1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)
2、几何平均数:Gn=(a1a2...an)^(1/n)=n次√(a1*a2*a3*...*an)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√
[(a1^2+a2^2+...+an^2)/n]
这四种平均数满足Hn≤Gn≤An≤Qn
a1、a2、…
、an∈R
+,当且仅当a1=a2=
…
=an时取“=”号
均值不等式的一般形式:设函数D(r)=[(a1^r+a2^r+...an^r)/n]^(1/r)(当r不等于0时);
(a1a2...an)^(1/n)(当r=0时)(即D(0)=(a1a2...an)^(1/n))
则有:当r<s时,D(r)≤D(s)
注意到Hn≤Gn≤An≤Qn仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询