可以帮我看看这道数学题吗?谢谢!
已知函数f(x)=x³+bx²+cx+d,x∈[-1,2],若对任意x1,x2∈[-1,2](其中x1≠x2),都有[f(x1)-f(x2)](x2-...
已知函数f(x)=x³+bx²+cx+d,x∈[-1,2],若对任意x1,x2 ∈[-1,2](其中x1≠x2),都有[f(x1)-f(x2)](x2-x1)>0成立,则b+c( )
A.有最大值15/2 B.有最大值-15/2 C.有最小值15/2 D.有最小值-15/2 展开
A.有最大值15/2 B.有最大值-15/2 C.有最小值15/2 D.有最小值-15/2 展开
展开全部
本题选 B [f(x1)-f(x2)](x2-x1)>0 推出该函数在区间上x∈[-1,2]为减函数
即f(x)=x³+bx²+cx+d 的倒数≤0在x∈[-1,2]恒成立
即3x²+2bx+c≤0在x∈[-1,2]恒成立
随意3-2b+c≤0 12+4b+c≤0 相加的15+2(b+c)≤0 推出b+c≤-15/2
即f(x)=x³+bx²+cx+d 的倒数≤0在x∈[-1,2]恒成立
即3x²+2bx+c≤0在x∈[-1,2]恒成立
随意3-2b+c≤0 12+4b+c≤0 相加的15+2(b+c)≤0 推出b+c≤-15/2
追问
随意3-2b+c≤0 ?哪来的
追答
即3x²+2bx+c≤0在x∈[-1,2]恒成立
另x=-1 另x=2带入得3-2b+c≤0 12+4b+c≤0
展开全部
设f(x)的导函数为f’(x),
f'(x) = 3x²+2bx+c ∴x1+x2 = -2b/3, x1•x2 = c/3
代入法----x1=-1,x2=2
[f(x1)-f(x2)](x2-x1)=[(-1+b-c+d)-(8+4b+2c+d)](3)=7-3b-3c>0
b+c<7/3=2.333333
排除法,选D
f'(x) = 3x²+2bx+c ∴x1+x2 = -2b/3, x1•x2 = c/3
代入法----x1=-1,x2=2
[f(x1)-f(x2)](x2-x1)=[(-1+b-c+d)-(8+4b+2c+d)](3)=7-3b-3c>0
b+c<7/3=2.333333
排除法,选D
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
考察的知识点有:函数单调性(定义),通过导数来判断单调性,二次函数的某个区间恒大于0的求解,线性规划等知识点。具体解法自己慢慢探索,不懂多问老师,发个题目到网上也浪费很多时间,还不如问周围的同学。
追问
thanks!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询