设f(x)是连续函数,且f(x)=x+2{f(t)dt,则f(x)=? 请立刻回答

娜099v肙
2014-06-26 · TA获得超过156个赞
知道答主
回答量:129
采纳率:0%
帮助的人:140万
展开全部
设A=∫f(t)dt,积分上限是1,下限是0
则f(x)=x+A
A=f(x)-x
所以
f(x)=x+2∫f(t)dt
=x+2∫(t+A)dt
=x+2*(t^2/2+At)(1,0)
=x+2*(1/2+A)
=x+1+2A
=x+1+2(f(x)-x)
=x+1+2f(x)-2x
=2f(x)-x+1
所以
f(x)=x-1
希望对你能有所帮助。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式