已知函数f (x)= cosxsin( x+π/3)-√3cos²x+√3/4,x属于R. (1
2014-08-02 · 知道合伙人软件行家
关注
展开全部
f(x)=cosxsin(x+π/3)-√3cos^2x+(√3)/4
=cosx(1/2sinx+√3/2cosx)-√3cos^2x+(√3)/4
=1/4sin2x-√3/2cos^2x+(√3)/4
=1/4sin2x-√3/4(cos2x+1)+(√3)/4
=1/4sin2x-√3/4cos2x
=1/2sin(2x-π/3)
最小正周期T=π
-π/2<2X-π/3<π/2,递增
-π/12<X<5π/12
-7π/12<X<-π/12, 递减
在【-π/4,π/4】上,-7π/12<-π/4<-π/12,最小值f(-π/12)=-1/2
-π/12<π/4<5π/12, 最大值f(π/4) =1/4
=cosx(1/2sinx+√3/2cosx)-√3cos^2x+(√3)/4
=1/4sin2x-√3/2cos^2x+(√3)/4
=1/4sin2x-√3/4(cos2x+1)+(√3)/4
=1/4sin2x-√3/4cos2x
=1/2sin(2x-π/3)
最小正周期T=π
-π/2<2X-π/3<π/2,递增
-π/12<X<5π/12
-7π/12<X<-π/12, 递减
在【-π/4,π/4】上,-7π/12<-π/4<-π/12,最小值f(-π/12)=-1/2
-π/12<π/4<5π/12, 最大值f(π/4) =1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询