求不定积分与定积分得关系
3个回答
展开全部
最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:云烟纵横
不定积分与定积分的区别与联系不定积分计算的是原函数(得出的结果是一个式子)定积分计算的是具体的数值(得出的借给是一个具体的数字)不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。其中:[F(x)+C]'=f(x)一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值.定积分就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b.不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的
原发布者:云烟纵横
不定积分与定积分的区别与联系不定积分计算的是原函数(得出的结果是一个式子)定积分计算的是具体的数值(得出的借给是一个具体的数字)不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。其中:[F(x)+C]'=f(x)一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值.定积分就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b.不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的
展开全部
不定积分最初的引入是作为求导的逆运算,用来求出一个函数的原函数。而定积分的几何意义是求函数与坐标轴围成的面积。虽然这样看来定积分与不定积分看上去没什么关系,但是牛顿-莱布尼茨公式告诉我们,定积分可以通过求不定积分得到,因此建立了不定积分和定积分的关系。因此,牛顿-莱布尼茨公式才被称为“微积分基本定理”。
o(∩_∩)o
如果我的回答对您有帮助,记得采纳哦,感激不尽。
o(∩_∩)o
如果我的回答对您有帮助,记得采纳哦,感激不尽。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不定积分可以看作是导数的逆运算。其结果为一族函数。
定积分的结果为一个数字,它们的本质是不同的。
定积分最初是人们在求面积和体积问题中发现的一种方法,它可通过极限的思想把这类问题解决。
定积分与不定积分原本是没什么关系的。
后来牛顿和莱不尼兹发现了“牛顿-莱不尼兹公式”,通过这个公式,可以把定积分的问题转化为不定积分,然后计算,这样才使二者有了关系。方法就是先把定积中的不定积分求出来,然后将上下限代入再相减,可得出定积分的结果。
定积分的结果为一个数字,它们的本质是不同的。
定积分最初是人们在求面积和体积问题中发现的一种方法,它可通过极限的思想把这类问题解决。
定积分与不定积分原本是没什么关系的。
后来牛顿和莱不尼兹发现了“牛顿-莱不尼兹公式”,通过这个公式,可以把定积分的问题转化为不定积分,然后计算,这样才使二者有了关系。方法就是先把定积中的不定积分求出来,然后将上下限代入再相减,可得出定积分的结果。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |