幂级数求收敛域
2个回答
展开全部
幂级数的收敛域可以分为以下两步:
第一步,求幂级数的收敛半径R,从而得到收敛区间;
第二步,讨论幂级数在±R处的敛散性,得到收敛域。判别的时候利用正项级数敛散性判别或者交错级数判别的莱布尼兹判别法就行了,一般来说难度不会过大,因此本文不予赘述。
一般教材中提及了收敛半径的求法,并没有明确地说为何。这里就要涉及前面提到的判别正项级数收敛的比式判别法和根值判别法了。我们可以用将幂级数视为正项级数处理,按照比式判别法或者根值判别法的条件可以得到关于x的不等式,这里不等式的解集刚好就是幂级数的收敛区间。虽然这样的处理看上去不是很严密,但是可以帮助我们理解计算收敛半径的方法。
我们有求幂级数收敛半径的两个公式;
R=limn→∞1|an|√n以及R=limn→∞∣∣anan+1∣∣,前者对应的是根值判别法,后者对应的是比式判别法。不过要注意这与判别法极限式有倒数的关系。具体该用哪一公式,还是需看的形式。如果它有次方,那么用根式判别式的形式,即前面那个公式要好一些。如果有阶乘或者常数的指数的形式,用比式判别法的形式,即后面那个公式要好一些。当然,这也不是绝对化的,主要看哪种形式的极限比较好求,也不是一概而论,还需要一定量的解题积累经验。由于有明确的公式可以套用,只涉及到公式的选择问题,因而这个问题并没有太大的技巧性。
例1:求幂级数∑n=0∞xnn⋅2n的收敛域
数列的通项有n次方,可以使用根值判别法的形式;两项求比值后形式也简明,也可以使用比式判别法的形式,极限都比较好求,因此不需要纠结用哪一个公式更好,直接做就可以了。这里对求收敛半径这一步骤用两种不同方法,而最后判别两端点处的敛散性方法是统一的。
第一步,求幂级数的收敛半径R,从而得到收敛区间;
第二步,讨论幂级数在±R处的敛散性,得到收敛域。判别的时候利用正项级数敛散性判别或者交错级数判别的莱布尼兹判别法就行了,一般来说难度不会过大,因此本文不予赘述。
一般教材中提及了收敛半径的求法,并没有明确地说为何。这里就要涉及前面提到的判别正项级数收敛的比式判别法和根值判别法了。我们可以用将幂级数视为正项级数处理,按照比式判别法或者根值判别法的条件可以得到关于x的不等式,这里不等式的解集刚好就是幂级数的收敛区间。虽然这样的处理看上去不是很严密,但是可以帮助我们理解计算收敛半径的方法。
我们有求幂级数收敛半径的两个公式;
R=limn→∞1|an|√n以及R=limn→∞∣∣anan+1∣∣,前者对应的是根值判别法,后者对应的是比式判别法。不过要注意这与判别法极限式有倒数的关系。具体该用哪一公式,还是需看的形式。如果它有次方,那么用根式判别式的形式,即前面那个公式要好一些。如果有阶乘或者常数的指数的形式,用比式判别法的形式,即后面那个公式要好一些。当然,这也不是绝对化的,主要看哪种形式的极限比较好求,也不是一概而论,还需要一定量的解题积累经验。由于有明确的公式可以套用,只涉及到公式的选择问题,因而这个问题并没有太大的技巧性。
例1:求幂级数∑n=0∞xnn⋅2n的收敛域
数列的通项有n次方,可以使用根值判别法的形式;两项求比值后形式也简明,也可以使用比式判别法的形式,极限都比较好求,因此不需要纠结用哪一个公式更好,直接做就可以了。这里对求收敛半径这一步骤用两种不同方法,而最后判别两端点处的敛散性方法是统一的。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询