在小学数学教学中如何培养学生的思维能力
展开全部
(一)运用多媒体教学手段渗透数学思想:在小学阶段,数学思维能力的培养,要坚持寓教于乐的原则。通过多媒体和网络平台收集并呈现有趣的数学解决实际问题的内容。例如,将动画片中的有关数学的内容剪辑下来,在课前或者课间播放,既能够让学生的精神得到放松,又能够让学生在观看动画的时候感受数学的实用性。
(二)套构的方式强化数学模型:套构的方式与类比的方法类同,是根据两类或两个对象的相似或相同点,推断他们其他方面也相似或相同的思想方法是自特殊至特殊的方法在解决数学问题时。利用类比思想可发现新问题,所得结论虽具有一定的偶然性但却可为该问题的深入研究提供线索为思维指明方向这对于问题的最终解决极为有利放而类比是数学发现中最基本、最重要方法在小学数学教学中教师应在结构特征上、数量关系上、算理思路与思想内容上进行类比思想的渗透教学。例如,在加法交换律的学习中,可以充分利用类比的方式。算式1+2+3+4+5+6+7+8+9+10=?这个题的解法有很多种,可以将各个加数依次相加,最终得出结构。也可以用加法交换率将算式进行加数上的调整。原式=1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10+10+10+5+10=55。套构加法交换率在连加算式中的应用,能够使得计算更加简便。套构既定数学定律或者定律,不但有利于学生巩固所学的知识,而且能够让学生养成用数学模型来解决实际问题的意识。这样有利于学生后续数学建模思想的学习和研究。
(三)逆向思维的方法:逆向思维是发散式思维的一种其基本特征是从已有思路的反方向去思索问题这种思维形式反映了思维过程的间断性、突变性、反联结性是对思维惯性的克服其优点在于首先有利于克服惯常思维的保守性,开拓新的数学领域其次有利于纠正惯常思维所造成的错误认识,开辟数学新方向最后有利于排除惯常思维过程中。逆向思维的方法多用于应用题的解答。例如,张兰在暑假阅读文学名著《三国演义》,在第一周,他阅读了一本书的一半少40页,在第二周,他阅读了剩下的一半多10页,第三周他阅读了30页,至此全部看完。问题是《三国演义》这本书一共多少页?利用逆向思维来解答,第二周阅读了剩下的一半多10页,第三周阅读了30页看完,即30页加10页正好是剩下的一半,也就是40页;剩下的书页数是80页;第一周阅读了书的一半少40页,即比80页少40页,也就是第一周阅读了40页。所以这本书总共是80页加上40页,等于120页。逆向思维这种数学思维的好处在于可以根据问题和题中已知的部分条件来还原出潜在的条件,运用还原出的条件可以继续向前堆。如此这般环环相扣,最终就能解决问题。
(四)联系生活创设情境:人们在学习比较难的知识时,其最大的动力是能够解决自己的实际问题。为了培养学生的数学思维,可以通过将数学内容与学生日常生活相联系的方法。这样学生在情境中可以意识到如果解决这个问题会给其生活带来益处,所以要努力学生,最终养成用数学思维解决问题的好习惯。相反,在数学课堂上,联系生活情景,能够让孩子们利用生活常识和生活经验更好地去理解数学解题方法。例如,关于三角形具有稳定性的教学内容中,教师可以让学生用三个磁扣将挂图固定在黑板上,为了配合教学活动,可以增加挂图的重量,这样可以使得三个磁扣平行放置无法稳定住挂图。学生通过实验发现,只有三个磁扣组成三角形时才能够稳定挂图。教学内容讲授结束后,还要引导学生联系生活实际。比如,用三个钉子来固定一个镜框,钉子的位置怎么安排最合理。
(二)套构的方式强化数学模型:套构的方式与类比的方法类同,是根据两类或两个对象的相似或相同点,推断他们其他方面也相似或相同的思想方法是自特殊至特殊的方法在解决数学问题时。利用类比思想可发现新问题,所得结论虽具有一定的偶然性但却可为该问题的深入研究提供线索为思维指明方向这对于问题的最终解决极为有利放而类比是数学发现中最基本、最重要方法在小学数学教学中教师应在结构特征上、数量关系上、算理思路与思想内容上进行类比思想的渗透教学。例如,在加法交换律的学习中,可以充分利用类比的方式。算式1+2+3+4+5+6+7+8+9+10=?这个题的解法有很多种,可以将各个加数依次相加,最终得出结构。也可以用加法交换率将算式进行加数上的调整。原式=1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10+10+10+5+10=55。套构加法交换率在连加算式中的应用,能够使得计算更加简便。套构既定数学定律或者定律,不但有利于学生巩固所学的知识,而且能够让学生养成用数学模型来解决实际问题的意识。这样有利于学生后续数学建模思想的学习和研究。
(三)逆向思维的方法:逆向思维是发散式思维的一种其基本特征是从已有思路的反方向去思索问题这种思维形式反映了思维过程的间断性、突变性、反联结性是对思维惯性的克服其优点在于首先有利于克服惯常思维的保守性,开拓新的数学领域其次有利于纠正惯常思维所造成的错误认识,开辟数学新方向最后有利于排除惯常思维过程中。逆向思维的方法多用于应用题的解答。例如,张兰在暑假阅读文学名著《三国演义》,在第一周,他阅读了一本书的一半少40页,在第二周,他阅读了剩下的一半多10页,第三周他阅读了30页,至此全部看完。问题是《三国演义》这本书一共多少页?利用逆向思维来解答,第二周阅读了剩下的一半多10页,第三周阅读了30页看完,即30页加10页正好是剩下的一半,也就是40页;剩下的书页数是80页;第一周阅读了书的一半少40页,即比80页少40页,也就是第一周阅读了40页。所以这本书总共是80页加上40页,等于120页。逆向思维这种数学思维的好处在于可以根据问题和题中已知的部分条件来还原出潜在的条件,运用还原出的条件可以继续向前堆。如此这般环环相扣,最终就能解决问题。
(四)联系生活创设情境:人们在学习比较难的知识时,其最大的动力是能够解决自己的实际问题。为了培养学生的数学思维,可以通过将数学内容与学生日常生活相联系的方法。这样学生在情境中可以意识到如果解决这个问题会给其生活带来益处,所以要努力学生,最终养成用数学思维解决问题的好习惯。相反,在数学课堂上,联系生活情景,能够让孩子们利用生活常识和生活经验更好地去理解数学解题方法。例如,关于三角形具有稳定性的教学内容中,教师可以让学生用三个磁扣将挂图固定在黑板上,为了配合教学活动,可以增加挂图的重量,这样可以使得三个磁扣平行放置无法稳定住挂图。学生通过实验发现,只有三个磁扣组成三角形时才能够稳定挂图。教学内容讲授结束后,还要引导学生联系生活实际。比如,用三个钉子来固定一个镜框,钉子的位置怎么安排最合理。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询