已知θ为正锐角,求证sinθ+cosθ<π/2
1个回答
展开全部
sinθ+cosθ=√2(sinθ*√2/2+cosθ*√2/2)
又因为有sin(α+β)=sinαcosβ+cosαsinβ,且sin45=cos45=√2/2
所以sinθ*√2/2+cosθ*√2/2=sinθ*cos45+cosθ*sin45=sin(θ+45°)
所以sinθ+cosθ=√2(sinθ*√2/2+cosθ*√2/2)=√2sin(θ+45°)得证
原题中,sinθ+cosθ=√2sin(θ+45°),且sin(θ+45°)小于等于1,所以√2sin(θ+45°)小于等于√2,又因为√2小于1.5且π/2约等于3.14/2大于1.5,所以sinθ+cosθ<π/2
原式得证。
又因为有sin(α+β)=sinαcosβ+cosαsinβ,且sin45=cos45=√2/2
所以sinθ*√2/2+cosθ*√2/2=sinθ*cos45+cosθ*sin45=sin(θ+45°)
所以sinθ+cosθ=√2(sinθ*√2/2+cosθ*√2/2)=√2sin(θ+45°)得证
原题中,sinθ+cosθ=√2sin(θ+45°),且sin(θ+45°)小于等于1,所以√2sin(θ+45°)小于等于√2,又因为√2小于1.5且π/2约等于3.14/2大于1.5,所以sinθ+cosθ<π/2
原式得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询