积分中的变量替换
比如设x=sint,把末尾的dx换成costdt,然后再进行积分可以得到正确结果?为什么这样做可以得到正确结果...
比如设x=sint,把末尾的dx换成costdt,然后再进行积分可以得到正确结果?
为什么这样做可以得到正确结果 展开
为什么这样做可以得到正确结果 展开
1个回答
展开全部
题目当中给出的做法以及对又例的明白都是对的,经过变量替换以后,u确实是新的积分变量,原来的积分变量是t,对积分而言,x可看作常量,对求导而言,x是求导变量,这些都是对的。
你的问题是说,题目和又例是两种情况,前者u=2x-t,x与(新)积分变量u有关,而后者x与积分变量t无关,是吧。
是这样,对该变量替换来说,x与u在形式上是有关系的,但其实是常量与变量的关系(只有t与u是变量间的关系),由此,x相对于新的积分变量u看作常量就不难理解了。或者说,当变量替换的步骤完成以后,x与u的那个关系,我们已经在变量替换的过程中考虑完毕(换积分变量、换积分限、换被积函数等),此时,我们要独立地审视替换后的积分表达式,而不再关联关系u=2x-t,这也可以说是定积分换元的一个特点吧。
注意一下,在本质上,替换u=2x-t中,u与t是变量替换中的一对变量,而x始终是常量(对积分而言,不是对求导)。
回答你的追问“u中是含有x的也就是说与x有关” 如下:
不错,“u中是含有x的也就是说与x有关”,但是是变量与常量的关系,不是变量与变量的关系。
这样可以么?
你的问题是说,题目和又例是两种情况,前者u=2x-t,x与(新)积分变量u有关,而后者x与积分变量t无关,是吧。
是这样,对该变量替换来说,x与u在形式上是有关系的,但其实是常量与变量的关系(只有t与u是变量间的关系),由此,x相对于新的积分变量u看作常量就不难理解了。或者说,当变量替换的步骤完成以后,x与u的那个关系,我们已经在变量替换的过程中考虑完毕(换积分变量、换积分限、换被积函数等),此时,我们要独立地审视替换后的积分表达式,而不再关联关系u=2x-t,这也可以说是定积分换元的一个特点吧。
注意一下,在本质上,替换u=2x-t中,u与t是变量替换中的一对变量,而x始终是常量(对积分而言,不是对求导)。
回答你的追问“u中是含有x的也就是说与x有关” 如下:
不错,“u中是含有x的也就是说与x有关”,但是是变量与常量的关系,不是变量与变量的关系。
这样可以么?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询