利用比值审敛法判定级数[∞ ∑ n=1] (n!)^2 / [(2n)!]的敛散性

 我来答
庄夜闻人俊德
2019-09-04 · TA获得超过1104个赞
知道小有建树答主
回答量:1385
采纳率:95%
帮助的人:6万
展开全部
an=(n!)^2/[(2n)!]an+1/an=[(n+1)!]^2/[(2n+2)!]/(n!)^2/[(2n)!]= [(n+1)!/n!]^2*[(2n)!/(2n+2)!]=(n+1)^2/(2n+1)(2n+2)lim(n→∞)an+1/an=lim(n→∞) (n+1)^2/(2n+1)(2n+2)=1/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式