设A+B+C=1,A^+B^+C^=1且a>b>c,求证-1/3
展开全部
因为a+b+c=1,那么(a+b+c)^2=1
所以a^2+b^2+c^2+2ab+2bc+2ac=1.
又因为a^2+b^2+c^2=1,所以ab+bc+ac=0,
所以ab+c(a+b)=0,又a+b=1-c
ab=c^2-c.
得到ab=c^2-c,
又a+b=1-c,利用韦达定理得a,b是方程x^2+(c-1)x+c^2-c=0的两不等实数根.故其判别式大于零,即(c-1)^2-4(c^2-c)>0,解之得-1/3b>c>0,那么ab+ac+bc>0与之矛盾,故c
所以a^2+b^2+c^2+2ab+2bc+2ac=1.
又因为a^2+b^2+c^2=1,所以ab+bc+ac=0,
所以ab+c(a+b)=0,又a+b=1-c
ab=c^2-c.
得到ab=c^2-c,
又a+b=1-c,利用韦达定理得a,b是方程x^2+(c-1)x+c^2-c=0的两不等实数根.故其判别式大于零,即(c-1)^2-4(c^2-c)>0,解之得-1/3b>c>0,那么ab+ac+bc>0与之矛盾,故c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询