求不定积分∫√1+x^2 dx,根号下是1+x^2
展开全部
作三角代换,令x=tant 则∫√(1+x^2) dx=∫sec³tdt=∫sect(sect)^2dt=∫sectdtant=secttant-∫tantdsect=secttant-∫(tant)^2sectdt=secttant-∫((sect)^2-1)sectdt
=secttant-∫(sect)^3dt+∫sectdt
=secttant+ln│sect+tant│--∫(sect)^3dt
所以∫(sect)^3dx=1/2(secttant+ln│sect+tant│)+C
从而∫√(1+x^2) dx=1/2(x√(1+x²)+ln(x+√(1+x²)))+C
=secttant-∫(sect)^3dt+∫sectdt
=secttant+ln│sect+tant│--∫(sect)^3dt
所以∫(sect)^3dx=1/2(secttant+ln│sect+tant│)+C
从而∫√(1+x^2) dx=1/2(x√(1+x²)+ln(x+√(1+x²)))+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |