
微积分基本定理是怎样推导出来的?
1个回答
展开全部
应用积分中值定理,可以得到
Φ(x+Δx)
-
Φ(x)
=
μΔx
其中m0,即
lim
Φ(x+Δx)
-
Φ(x)
=
0(当Δx->0)
因此Φ(x)为连续函数
其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为
Φ'(x)
=
f(x)
Φ(x+Δx)
-
Φ(x)
=
μΔx
其中m0,即
lim
Φ(x+Δx)
-
Φ(x)
=
0(当Δx->0)
因此Φ(x)为连续函数
其次要证明:如果函数f(t)在t=x处连续,则Φ(x)在此点有导数,为
Φ'(x)
=
f(x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询