如图,在三角形abc和三角形ade中,ab=ac,ad=ae,角bac=角dae=90度 将图一中 5
如图,在三角形abc和三角形ade中,ab=ac,ad=ae,角bac=角dae=90度将图一中的三角形ade绕点a顺时针旋转a角(a小于90度大于0度),如图2,线段B...
如图,在三角形abc和三角形ade中,ab=ac,ad=ae,角bac=角dae=90度
将图一中的三角形ade绕点a顺时针旋转a角(a小于90度大于0度),如图2,线段BD,CE又有怎样的数量关系和位置关系?请说明理由 展开
将图一中的三角形ade绕点a顺时针旋转a角(a小于90度大于0度),如图2,线段BD,CE又有怎样的数量关系和位置关系?请说明理由 展开
展开全部
分析:(1)①BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;然后在△ABD和△CDF中,由三角形内角和定理可以求得∠CFD=90°,即BD⊥CF;
②BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;作辅助线(延长BD交AC于F,交CE于H)BH构建对顶角∠ABF=∠HCF,再根据三角形内角和定理证得∠BHC=90°;
(2)根据结论①、②的证明过程知,∠BAC=∠DFC(或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.
解答:解:(1)图1做BF⊥EC于F 图2做BH⊥EC于H
①结论:BD=CE,BD⊥CE;
②结论:BD=CE,BD⊥CE…1分
理由如下:∵∠BAC=∠DAE=90°
∴∠BAD-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE…1分
在△ABD与△ACE中,
∵AB=AC∠BAD=∠CAEAD=AE
∴△ABD≌△ACE…2分
∴BD=CE…1分
延长BD交AC于F,交CE于H.
在△ABF与△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC
∴∠CHF=∠BAF=90°
∴BD⊥CE…3分
(2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°…2分
②BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;作辅助线(延长BD交AC于F,交CE于H)BH构建对顶角∠ABF=∠HCF,再根据三角形内角和定理证得∠BHC=90°;
(2)根据结论①、②的证明过程知,∠BAC=∠DFC(或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适.
解答:解:(1)图1做BF⊥EC于F 图2做BH⊥EC于H
①结论:BD=CE,BD⊥CE;
②结论:BD=CE,BD⊥CE…1分
理由如下:∵∠BAC=∠DAE=90°
∴∠BAD-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE…1分
在△ABD与△ACE中,
∵AB=AC∠BAD=∠CAEAD=AE
∴△ABD≌△ACE…2分
∴BD=CE…1分
延长BD交AC于F,交CE于H.
在△ABF与△HCF中,
∵∠ABF=∠HCF,∠AFB=∠HFC
∴∠CHF=∠BAF=90°
∴BD⊥CE…3分
(2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°…2分
追问
这是错的啊,百度上找的吧
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询