asinα+bcosα=(√a平方+b平方)sin(α+θ)证明.
展开全部
这不需要证明,只不过是化简
asinα+bcosα 提出√(a²+b²)
=√(a²+b²)(√(a²+b²)sinα/a+√(a²+b²)cosα/b)
=√(a²+b²)sin(α+θ) [tanθ=b/a]
举个例子
(1).3sinα+4cosα=5(3sinα/5+4cosα/5)=5sin(α+θ) [tanθ=4/3]
(2).1/2sinα+√3cosα/2=sin(α+60°) [tan60°=√3/2÷1/2=√3]
asinα+bcosα 提出√(a²+b²)
=√(a²+b²)(√(a²+b²)sinα/a+√(a²+b²)cosα/b)
=√(a²+b²)sin(α+θ) [tanθ=b/a]
举个例子
(1).3sinα+4cosα=5(3sinα/5+4cosα/5)=5sin(α+θ) [tanθ=4/3]
(2).1/2sinα+√3cosα/2=sin(α+60°) [tan60°=√3/2÷1/2=√3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询