设函数f(x)=ax- ,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0。(1)求y=f(x)的解析式
设函数f(x)=ax-,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0。(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线...
设函数f(x)=ax- ,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0。(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值。
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询